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Abstract 

Like many organizations in both the public and private sectors, the U.S. Department of 
Defense (DoD) is committed to a policy of using commercial off-the-shelf (COTS) 
components in new systems, particularly information systems. However, the DoD also has a 
long-standing set of security needs for its systems, and the pressure to adopt COTS 
components can come into conflict with those security constraints. The major elements of 
this conflict are the DoD's overall approach to system security on one hand and the 
economic forces that drive the component industry on the other. As DoD managers and 
system integrators look to the COTS marketplace for components to satisfy more security 
requirements, this conflict becomes more prominent. In this report, we describe an actual 
product evaluation where just such a conflict occurred, examine why that conflict exists, and 
outline the corrective steps that were taken. 
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Executive Summary 

In November 1998 the Joint Engineering Data Management Information and Control System 
(JEDMICS) program asked the Software Engineering Institute to investigate the use of a 
particular product for protecting data assets in the JEDMICS system. This product, produced 

by Cryptek, consists of both networking hardware and software. The objective of the 
investigation was to identify technical risks in the second phase of JEDMICS deployment of 
Cryptek products. The first phase of deployment would use Cryptek products for data 
encryption and firewall protection. The second phase would introduce the use of data labels 
to provide confidentiality in a multi-user, multi-contractor environment. The first phase of 
deployment would be "non-intrusive"—i.e., no design or code changes would be needed to 
the JEDMICS system. The second phase would require design and code changes, but the 
extent of these changes was unknown. The SEI task was to identify design risks for the 
second phase deployment, and propose mitigation strategies. 

The major findings of this investigation are the following: 

1. Platform services needed to use Cyrptek for data labeling work on some JEDMICS 
platforms (Solaris and IPJX), but not on others (WindowsNT, Windows9x). This means 
that Windows platforms cannot be used to provide JEDMICS services that submit data to 
JEDMICS servers where these submissions must use data labels for security. 

2. The network protocol used by the JEDMICS system (TCP/IP) does not support changing 
data labels in the same session. This means that changes to the JEDMICS design and 
implementation will be required to support clients requesting documents with different 
data labels. 

This report reaches no categorical conclusions regarding the feasibility of using Cryptek 
products in JEDMICS. We do not know whether labeled data must be submitted from 
Windows platforms (finding #1). We also do not know how much design or implementation 
rework is required, or the degree of freedom allowed in making various design tradeoffs— 
for example, designs that address finding #2 but seriously degrade performance. Also, there 
are other issues regarding Cryptek that we have not fully investigated—for example, the fact 
that third-party software such as Oracle, Browsers, etc., need to be made "Cryptek aware" if 
these products are to use data labels. Thus, while we are not categorical about the feasibility 
of using Cryptek, we can say there are significant unknowns, at least to the SEI. 

The attached report is a technical summary of the SEI investigation. After submitting a draft 
version of this report to the JEDMICS program office for review, the SEI and JEDMICS 
outlined a design mitigation strategy (see the Epilogue of this report) and a series of steps 
that might demonstrate the feasibility of this strategy. However, at this time, the technical 

feasibility of this mitigation strategy remains unconfirmed. 
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1    Introduction 

"The supreme misfortune is when theory outstrips performance." 
—Leonardo da Vinci 

Use of commercial off-the-shelf components is becoming more predominant everyday. 
COTS products are making their way into systems that are being deployed in the U.S. 
Department of Defense (DoD), federal and state agencies, and U.S. industry. These systems 
range from the very simple to the very complex, from information systems to embedded 
systems, and from the non-essential to the most critical. With such widespread use of COTS 
components, it is easy to see why conflicts between the needs of a system and the 
capabilities of components can arise. In some cases these conflicts can be so great that there 
is no resolution, and the COTS solution is abandoned. 

This conflict is greatest when products and the standards they implement are outstripped by 
actual system requirements. A project in the DoD faced such a conflict. This project re- 
quired the use of encryption and security labels on the data and network traffic that were 
transmitted from the system. The encryption would ensure that the data could not be seen by 
unauthorized recipients. The security labels would indicate the level of military-criticality 
and the proprietary nature of the data and information. A conflict arose between the commer- 
cial hardware and software that was used for encryption and labeling. 

In this report, we describe the investigations that were performed to determine how well the 
selected commercial components met the mission needs of the DoD project. We also 
discusses the underlying principles that were violated, which led to the conflict. The rest of 
this report is organized as follows: In Section 2, we explain the context of the mission re- 
quirements for data labeling and commercial standards employed. In Section 3, we describe 
the experimental testbed that was created to investigate the commercial component and the 
conflicts that were discovered. We present our summary in Section 4. In the epilogue 
(Section 5), we briefly discusses the repair strategy that was enacted to address the findings 
in this report. 
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2    Background 

The Joint Engineering Data Management Information and Control System (JEDMICS) is a 
program under joint sponsorship by the armed services of the U.S. Fundamentally, a 
JEDMICS system is a document and drawing repository. Essentially, one or more 
document(s)/drawing(s) (referred to generically as "documents" in the remainder of this 
report) can be stored, requested, and served from a JEDMICS system. Although a JEDMICS 
system is substantially more complicated than this, such a description will suffice as a 
working description in this report. 

The documents stored on a JEDMICS server often have proprietary commercial data rights 
or official military classifications and caveats. The data are proprietary because the 
documents detail the specifications of parts, components, subsystems, and systems in use in 
the DoD (e.g., nuts, bolts, engines, aircraft). The military classifications and caveats stem 
from the mission criticality of those items and how they are used by the DoD. The JEDMICS 
Program Office is not tasked with assigning those data rights and classifications to the 
documents. However, the program office is required to allow the end user to assign the 
appropriate labels. Therefore, a JEDMICS system should be functionally capable of labeling 
documents according to the handling requirements of the installation's cognizant authority. 

In support of this requirement, the JEDMICS Program Office investigated the use of com- 
mercial-off-the-shelf networking hardware and software to support data labeling. The 
product selected to support data labeling was Cryptek's Diamondris£ Ultra. 

2.1    Diamond TEK Ultra 

DiamondTisAT Ultra is a network subsystem that is made up of a network interface card 
(NIC), a user-assigned smart card, and a central management workstation (D7Central). The 
NIC replaces the typical network interface card found in most desktop workstations and 
servers (e.g., 3Com, NE2000). The product comes with software drivers for the Microsoft 
Operating Systems, Sun Microsystem's Solaris, and Silicon Graphic's IRIX. 

The Cryptek NIC is different from traditional NICs in that it can support a range of security 
features. The list of security features includes encryption (DES and Type-I crypto) and 
security data labeling. Additionally, the Cryptek NIC can be programmed to behave in a 
manner like that of a network firewall (e.g., host and port associated connectivity). The 
experiments described in this report centered on the data labeling capabilities of the Cryptek 
NIC. 
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Basic Operating Concept 

Upon computer start, the NIC is configured to operate with a security label. Any network 
traffic that originates from the NIC is labeled according to the configuration set in the NIC. 
Conversely, any network traffic received by the NIC is accepted only if the label matches the 
configuration set in the NIC. Any attempt to generate or receive network traffic that does not 
match the NIC's configuration is audited to DlCentral. 

NIC Configuration 

Configuration of the NIC is performed at any point after the host computer is turned on. This 
occurs once the end-user inserts his or her assigned smart-card into the KlCfs smart-card 
reader and enters a personal identification number (PIN). The user then selects his or her 
profile (e.g., secret, unclassified, etc.) via a toggle switch on the card reader. The NIC then 
sends station identification, user data, and profile information to DJCentral. DTCentral 
performs the necessary table lookups and responds to the NIC with the appropriate 
configuration. Finally, the configuration is used to program the NIC to the security level(s) 
for which it is permitted to operate (see Figure 1). 

Diamond Central 

Security 
level(s) 

End User 
Workstation      Diamond NIC 

w/reader 

Figure 1. Basic Operating Concept 

NIC Operation 

Once configured by DTCentral, the NIC can send and receive network traffic. On a write, the 
NIC places the assigned security level on every network packet transmitted. This security 
level is placed in the Internet Protcol's (IP) options field defined in RFC791 (the original 
protocol specification for IP) as a subtype for security, otherwise know as the Internet 
Protocol Security Option (IPSO) defined in RFC1108. This security option is simply 
appended to the end of the normal DP header (see Figure 2). 
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Physical 
Header 

IP Header 
IP Options 
(sec label) 

TCP 
Header 

Data 

physical header 

jd.sei.cmu.edu -> gc.sei.cmu.edu /CP D=4004 S=34304 
Ack=3482872727 Seq=832516110 Jfen=120 Win=8760 

■:^: 10800 2023 160f 0800 2077 16b6 080C| 4800 
i?: OOac 625e 4000 ff06 8440 80ed 0362 80ed 
32: 031bJ860c 0000 0000 0206 0055 OOet) 8600 
•3<i: Ofay 319£ 300e cf98 6b97 5018 2238 8e7f 
64 : 0/00 15555 5555 5555 5555 5555 5555 555& , .1 

security label 

s* 

% 
IPSO header data 

Figure 2. IP Packet with IPSO Option 

On a read, the NIC simply queries the IP options field, looking for both the set security 
option and the contents of that security label. If the label is not appropriate for the 
configuration set for the receiving NIC, the NIC ignores the IP packet; otherwise the packet 
is processed accordingly. 

Since the option field used for the security data label is actually part of the IP header, the 
NIC is capable of labeling both TCP (Transmission Control Protocol, RFC793) and UDP 
(User Datagram Protocol, RFC768) network traffic, as well as any other IP-based protocol. 

NIC Modes of Operation 

The NIC and software drivers can operate in one of two modes: autonomous and non- 
autonomous. These modes are significant to network write operations, not read operations. 

In autonomous mode, the NIC labels outgoing IP network traffic with the security level 
assigned and configured by DTCentral (discussed above, in "NIC Configuration"). The NIC 
software device driver reads the assigned security level from the memory on the NIC. This 
information is then formatted by the software device driver to confirm to the IPSO 
specification to build a properly-formed IP header with options. On a write, the IP header and 
options, along with the data, are passed to the NIC for transmission (see Figure 3a). 
Essentially, in this mode of operation, only a single label is capable of being generated and 
subsequently transmitted by the NIC. 

In non-autonomous mode, the data label that is to be placed on outgoing data comes from the 
user application and not the NIC memory. This label can be set by a user application through 
a POSIX setsockopt () operation (see Figure 3b). Since the NIC is not solely responsible 

for determining the labeling of the packets in non-autonomous mode, the NIC can transmit 
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different network packets with different labels—although those labels must still conform to 
the range configured for the NIC. 

o 
z 

1) security 
configuration 

2) security 
label & data 

3) security 
label & data 

DiamondV/C Hardware 
Device Driver 

E 
£ 
CO 

Native Protocol Stack 

Host Operating 
System 

E 

CO 

ware 
Device Driver 

Native Protocol Stack 
fc*l 

Host Operating 
System 

Application       -1 

2) IP 
options 

1)set IP 
Options 
(label) 

a) autonomous mode b) non-autonomous mode 

Figure 3. NIC Modes of Operation 

2.2    JEDMICS and DiamondTEK Ultra 

JEDMICS deployment of the Cryptek technology described in Section 2.1 was scheduled to 
occur in two phases. The Phase 1 deployment is characterized as the non-intrusive use of 
Cryptek in a JEDMICS environment. In this non-intrusive phase, JEDMICS clients and 
servers would be unaware of DiamondTEK Ultra. This means, on one hand, that no software 
components in JEDMICS needed to be modified. On the other hand, the software would not 
have the ability to effectively manipulate data labels. Thus, in the Phase 1 deployment, there 
was no data labeling requirement. The only features of the DiamondZBÄ" Ultra product that 
were used were the encryption and firewall filtering capabilities (essentially creating a 
hardware-hardened virtual private network). Phase 1 deployment was consistent with the 
autonomous mode of operation of the DiamondTEK Ultra product. 

The Phase 2 deployment would add the additional requirement for data labeling, which 
would require a more intrusive integration of Diamondr£Ä" Ultra and the JEDMICS 
environment. Since JEDMICS servers are required to manage documents with different data 
labels, a JEDMICS server would assign the correct IPSO label for all documents leaving a 
JEDMICS server. As such, the server will be expected to reconfigure the IPSO label upon 
each separate request for a document. Therefore, the non-autonomous mode of operation 
seemed consistent with the concept of JEDMICS operation discussed in Section 2, and 
seemed to match Phase 2 requirements. 

There were several open questions about whether DiamondTEK Ultra would work in Phase 
2, given the requirement for JEDMICS servers to label documents. This suggested the 
following three lines of inquiry: First, can the IPSO label be manipulated (i.e., set and read) 
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on server host operating systems where JEDMICS servers run? Second, is the IPSO label set 
making it into the actual network traffic? Third, are the protocols that are used by the 
JEDMICS server in any way affected by setting the label? The next section details our 
investigation. 
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3   The Investigation 

To answer the questions posed in the previous section, we devised three experiments. The 
first experiment determined the support for the POSDC setsockopt () across the 

operating systems needed in the JEDMICS environment. The second experiment addressed 
how network packets were affected by insertion of IPSO labels. Finally, the third experiment 

considered the effect of labeled packets on a network where different hosts had access to 

different labels. 

3.1    Experiment 1—setsockopt () 

This experiment centered on the needed support for setsockopt () on the operating 
systems that the JEDMICS server would operate. Without support for setsockopt (), it 
would be next to impossible for a JEDMICS server to directly set IPSO labels 
programmatically. In this experiment, we looked at Microsoft WindowsNT, Sun Solaris, and 
Silicon Graphics IPJX. 

WindowsNT and IPSO Data Labeling 

Microsoft's operating systems have struggled with the Internet Protocol for years, including 
TCP and UDP; this is still true today. The current version for Microsoft's TCP/IP stack 
(a.k.a. WinSock) is WinSock version 2.0, which is supported under Windows 95, 
WindowsNT, and Windows 98.1 Under WinSock 2.0, there is only limited support for 
configuration, or parameterization, of the IP, TCP, or UDP protocols. WinSock 2.0 has no 
support for IP_OPTIONS, which is a feature needed to support IPSO data labeling. 

A test program and snoop under Solaris demonstrated the lack of support for setting various 

JP parameters, including IP_OPTIONS (Internet Protocol Options) and IPJTTL (Internet 
Protocol Time To Live). These findings were further substantiated in references [Quinn 98] 
and [Microsoft 99], where it was confirmed that IP_OPTIONS was not required and may not 
always be supported. Interestingly enough, attempts to set these options using a test program 
on WinSock 2.0 failed silently. In other words, the WIN322 calls to setsockopt () and 
WSAGetLastError () returned codes that indicated that the calls were successful, when 

indeed they were not (see Figure 4). This was confirmed by the snoop utility as shown in 

Figure 5. 

1 Previous versions of Windows (3.1, 3.11, or WFW) were not checked. 
2 WIN32 is the name of the API which refers to the collection of functions, procedures, system calls 

which are the underpinnings of recent versions of Microsoft Windows (e.g., Windows95, 
WindowsNT). 
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l:Winnt_clt -n gc.sei.cmu.edu -e 4004 
2:CipsoLabel size is '12' 
3:Client connecting to: gc.sei.cmu.edu 
4:performing getsockopt(): can we get IP_TTL? 
5:  getsockopt() returned: retval 0, ttl 0x20 
6:performing setsockoptO on IP_TTL 
7:  setsockoptO returned: retval 0, error 0 
8:performing getsockopt(): 
9:  getsockopt() returned: 

Silent Failure 

0*- 

can we get IP_TTL? 
retval 0, ttl 0x40, 0*- 

10:performing getsockopt(): can we get IP_0PTI0NS? 
11:  getsockopt!) returned: 
12:performing setsockoptO 
13:  setsockoptO returned: 
14:performing getsockopt(): 
15:  getsockopt() returned: 

retval 0, lenop 0x0, error 0 ■+• 

retval 0, error 0 
can we get IP_OPTIONS? 
retval 0, lenop Oxc, error 0 «4- 

16:Sent Data [This is a small test message [number 0]] 

Figure 4. Sample Execution of WinNT_clt 

Referencing line 5 in Figure 4, the test program reports that the current value for the IP 
parameter time-to-live (TTL) is 0x20 (decimal 32). For line numbers 6 through 9, the test 
program instructs WinSock to set TTL to 0x40 (decimal 64). It also retrieves TTL from 
WinSock to confirm that TTL was set accordingly. All operations are performed without 
error. Lines 10 through 15 use the same WIN32 calls to set the IP_OPTIONS field to the 
IPSO header, and again all operations are performed without error. 

pcbj. 
Ack 

sei.cmu.edu  ->  gc.sei.cm 
=4100106949   Seq=25425401 

ii.edu TCP D=400< 
1 Len=128 Win=8' 

1 
H 

S= 
50 

=2701 

..U)8..... 

"B.R..This 
small  test 
ge   [number 

. . .E. 

b. . P. 
is a 
messa 
0] ... 

0:   0R00 
16:   OOaS 
32:   031b 

TTLfc k00 
80 
Of 

10   9/61 
)6      V'Vb6 
27   9bbb 

IHLfcL*?0, 
WS^JT S 0 so. 

48: 2238   f552   0000 5468   6973   2069  7320   6120 

80: 
736d  616c  6c20 7465  7374 206d  6573  7361 
6765  205b  6e75   6d62   6572 2030  5dp0   cOOc 

x / o : fa?7   1400   0000 

Figure 5. A Captured WinSock2.0 Network Packet 

Analysis of the network traffic generated by the test program proved that the calls to update 
the TTL and the IP_OPTIONS to include the IPSO header did indeed fail. These calls failed 
silently as the return codes from getsockopt (), setsockopt (), and 
WSAGetLas tError () all returned 0 (zero; or noError). Referring to Figure 5, there are 
three failures that must be noted: 

1. Actual TTL of 0x80 (decimal 128) was not correctly reported as shown on line 5 or 9; 
and was not set to 0x40 (decimal 64) as shown in Figure 4. 

2. Although lines 13 and 15 report success in setting and getting the IP.OPTIONS field 
for the IPSO header, the actual network packet that was sent did not include the 
ff_OPTIONS set by the test program in line 12 of Figure 4. 
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3.    Actual Internet Header Length (ML) of 0x05 (decimal 5) confirms that the length of the 
Internet header did not increase as would be expected if the IP_OPTIONS field had 
been set. The length of the IPSO header is 12 bytes, or better, three 4-byte words. An 
IHL of 5 words plus a IPSO header of 3 words should have resulted in a total IHL of 
0x08—which was expected, but not found in packet header. 

Solaris and IRIX and IPSO Data Labeling 

The other operating systems we examined in this experiment behaved correctly and similarly 
to each other with respect to setting the IP_OPTIONS via setsockopt (). However, 
retrieval via getsockopt () of the socket options set behaved differently in each operating 
system. This was a troubling surprise. 

/* 
* receiver.c 
*/ 

optlen = sizeofdpsoLabeU ; 
printf ("size = %d\n", optlen); 
status = getsockopt (con_fd, IPPROTO_IP, IP_OPTIONS, 

(char *) &IpsoLabel, fcoptlen) ; 
if (status == -1) { 

printf ("getsockopt failed %d, %d\n", status, errno) ; 
perror ("con_f d") ,- 

} else { 
printf ("optlen returned %d\n", optlen); 

printf("taglevel 0x%02x, category 0x%02x\n", 
IpsoLabeLTagLevel, IpsoLabeLTagCategory) ; 

} 
output: 
size = 12 

12 correct answer 
0x5 5 correct answer 

optlen returned 16 
taglevel Oxff^category Oxee* 

1 
Oxee correct answer I 

Figure 6. getsockopt () Under Solaris 

Both Solaris and IRTX would return an additional 4 bytes not associated with the IPSO label. 
The additional 4 bytes of data returned from the getsockopt () function call when 
requesting the current IP.OPTIONS appears to be a bug that stems from the special 
processing that is performed when setting the IP_OPTIONS using the setsockopt () 
function call. When setting IP_OPTIONS, special processing is performed to handle source 
routing. An additional 4 bytes is added to the beginning of the IP_OPTIONS data to account 
for the first hop when using source routing. This processing appears to occur even when the 
IP_OPTIONS data do not contain source routing information. The first 4 bytes are not 
actually included in the IP_OPTIONS data that go out on the wire. However, this bug results 
in an additional 4 bytes being returned for all getsockopt () functions calls requesting 
the current P_OPTIONS. 

Under Sun Solaris, getsockopt () would return the 4 bytes and the data contained in the 
IpsoLabel  struct (seen in Figure 6). If the buffer to getsockopt () did not account 
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for this, Solaris would inadvertently overwrite memory not allocated to the IpsoLabel 
struct. 

Under SGFs IRIX, getsockopt () would also return the 4 bytes not associated with the 

IpsoLabel struct but would not overwrite memory as on Solaris. However, the data 
returned in the IpsoLabel  struct was not correct and was offset by 4 bytes. 

Results from Experiment 1 
1. It is important to note that getsockopt () is designed to report on the current 

IP_OPTIONS settings for outgoing packets and cannot be used to determine the 
IP_OPTIONS on incoming packets. This test with getsockopt () confirmed that 
JEDMICS would not be able to rely on getsockopt () to report on the security label 
just received. Given the POSIX specification and the confirmed behavior of 
setsockopt () and getsockopt () for Solaris and IRIX, it would be impossible 
for a JEDMICS client to read the actual security label applied to network packets for a 
document retrieved from a JEDMICS server. 

2. setsockopt () under Solaris and IRK did perform as expected as IPSO data labels 
could be programmatically set. 

3. WinSock version 2.0 could not be used at all to support IPSO data labeling because 
setsockopt () had no effect on outbound data packets. Therefore, use of a Microsoft 
WindowsNT platform as a host for a JEDMICS server will not be possible without 
significant modification to the WinSock networking stack. Alternatively, it might be 
possible to find a third-party replacement for native WinSock, but such an investigation 
was beyond the scope of this effort. 

3.2    Experiment 2—IPSO Labels 

This experiment was designed to answer the question posed in Section 2: whether or not the 
IPSO date labels set from experiment 1 were actually making it out into the network traffic. 
In this experiment, we looked only at an application running under Sun Solaris and Silicon 
Graphics IRK. 

The Programs 

A test harness was constructed to help us answer our questions. This harness has the 
following components (illustrated in Figure 7 below): 

• 

• 

a simple client/server test program (e.g., sender and receiver) that would run on Sun 
Solaris and Silicon Graphics IRK 

an observation program (we'll call it the sentinel) to watch network traffic between the 
sender and receiver looking for network traffic that is labeled, what the label is, and if 
the label matches the user data contained in the network packet 

The sender program simulates the generation of data in a format likely to be generated by a 
JEDMICS server, mainly the IPSO data label. The receiver is a peer to the sender, which 
would receive the data and perform some additional tests. The sentinel program acts as an 
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aid to watch the network traffic between the sender and receiver programs. The details for 
these programs are discussed below. 

Promiscuous 
mode 

Figure 7. Sentinel Program 

Sender and Receiver 
The sender program would initiate a connection to the receiver. Once connected, the sender 
would perform the following functions: 

1. Set current security classification to 'U' ('U' for unclassified, 'S' for secret, and T' 
for top secret); the sequence for classifications would follow this ordering. 

2. Construct a security label with the current security classification. 

3. Use setsockopt () to assign the label to outgoing network traffic; check for 
error. 

4. Construct a message that matched the current security classification (e.g., 'U' data 
for 'U' label, 'S' data for 'S' label). 

5. Send data to receiver; check for error. 

6. Sequence to the next security classification. 

7. Repeat these steps again from step 2 above. 

The receiver, as a peer in this connection, would perform the following functions: 

1. Block, waiting for data to appear on the inbound socket. 

2. Read the data from the inbound socket; report the classification of the data (note: 
'IT data is sent with a 'U' label, etc.). 

3. Examine the receive buffer to detemine if data of different classifications were 
intermixed; report any such error. 

4. Repeat these steps again from step 1 above. 
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The sender and the receiver would continue in their respective loops until they were 
terminated. 

The sender took a number of command line options, which could be used to change the 
characteristics of the experiment. Those options are shown in the following table: 

Option Meaning Function 

-i TCP NO DELAY Data would be sent immediately and 
would not permit the operating system to 
buffer any data before sending. 

-n NON-BLOCKING WRITES Operating system is instructed to copy 
user data into the kernel and not wait for 
resources—not all data may be sent due 
to available kernel resources. 

-o RUN ONCE Program is only to send one message and 
stop. 

-p   [port] PORT NUMBER Sets the port number in which to contact 
the receiver. 

-s   [size] BUFFER SIZE Sets the size of the message to be sent to 
receiver (1 byte or greater). 

-u UDP DATAGRAM Use UDP datagrams (TCP is the default) 

Table 1. Sender Command Line Options 

Sentinel 

The sentinel program was designed to watch network traffic going between the sender and 
receiver programs. This was accomplished by programming the network interface to read the 
network in promiscuous mode. Promiscuous mode is simply a mode in which the network 
interface card (NIC) receives all packets on the network, regardless of the machine to which 
the packets are addressed. To minimize processing, the sentinel was programmed to read 
only packets destined for a specific port number for a specific machine. 

The sentinel was looking for IP packets that contained security violations. A security 
violation was defined as an IP packet containing an IPSO label that did not match the data 
contained in the packet. This definition, though limited, was sufficient to cover the cases of 
security violations for which we were interested. The violations of interest were the 
following: 
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• Packet mislabeling: TCP or UDP data is mislabeled in the IP packet header. That is, data 
appears in the network packet with an incorrect data label ('T' data labeled as 'U'). 

• Data mixing: TCP or UDP data requiring two different labels appear in the same IP 
packet (both 'T' and 'U' data appear in the same packet; regardless of the label). 

Packet Mislabeling 

Our test harness was worthwhile. It demonstrated a packet mislabeling problem that can be 
expected in a multi-labeling application (such as a JEDMICS server) running in a UNIX 
operating system. In UNIX there are two paths to the network interface device, the write () 
system call and the setsockopt () library call (which uses the ioctl () system call), as 
shown in Figure 8. 

In the first path (labeled data stream in Figure 8), blocks of data are moved from user 
(application) space to kernel space. Data are queued in kernel buffers to be processed by the 
network stack, then are presented to the network driver, and finally sent though the NIC onto 
the network. The second path is a direct command path to any functional layer through the 
kernel, to the network driver or to the NIC (see Figure 8). Such I/O control commands are 
not queued though the kernel stack like the data stream. 

Application 
Space 

Kernel 

-u 
u 
0 

■H 

■H 

Kernel Device 
buffers    independent 

routines 

Device 
specific 
drivers 

4 

hardware 

Figure 8. UNIX-Style Network Device Driver Architecture 

Because of these two paths to the NIC, an inherent race condition exists that is difficult to 
predict or control, and is at best problematic. This race condition can be illustrated by 
considering the following example. While a data stream is making its way through the kernel 
buffers and protocol stack(s), an I/O control is issued to one of the kernel routines or the 
device driver before, during, or after the data stream reaches that same logical place in the 
kernel. In our test harness, this was demonstrated by writing a sequence of 'T's to a network 
socket and later issuing a setsockopt () to label subsequent packets with the label 'U'. In 
many instances, latency in the kernel writes would result in data streams of 'T's to be labeled 
by the NIC as 'U' data. This represented a mislabeled network packet (i.e., T' data labeled 
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as 'U') and therefore a security violation. This was detected using the native Solaris snoop 
utility and sentinel; a snapshot of that detection is shown in Figure 9. 

jd.sei.cmu.edu -> gc.sei.cmu.edu TCP D=4004 S=34302 
Ack=1740419550 Seq=3395512586 Len=1000 Win=8760 

data 120; CIPSO header 
|860c 0000 0000 0206 0055 OOee ><5fe 
ca63 6<J!Js> 67be: bide 501.0 2?^f ;.-.<; fr- 

15454 5454 5454 5454 5454 5454 54541 . . TTTTTTTTTTTTTT 

IP_OPTION number 
IP_OPTION length 
CIPSO taglevel 
Security Violation 

from '128.237.3.98': found "I" when expecting 'U' at 0 of 1000 

0x86 (CIPSO) 
0x0c (12) 
U   (unclassified) 

Figure 9. A Captured Mislabeled Network Packet 

This race condition existed for the Sun Solaris 2.5.1, Sun Solaris 2.4, and Silicon Graphics 
IRIX 5.3. 

Data Mixing 

TCP is a byte-stream protocol in which there are no record markers inserted between 
application writes. If an application writes 50 bytes followed by a write of 10 bytes, followed 
by a write of 30 bytes, the receiving application cannot determine the size of each individual 
write. Additionally, the network system is allowed by the TCP specification to combine data 
from individual writes into one TCP packet and to fragment a single write into multiple 
packets. Therefore, there is no way to guarantee how that fragmentation or combination will 
occur. To illustrate this point, consider the following application-specific protocol over TCP: 

1. Client and server connect. 

2. Client opens a file. 

3. Client writes to the network the total size in bytes of the file to be sent. 

4. Client writes to the network the bytes from the file. 

5. Client continues from step 2 above until all files have been processed. 

In this simple application protocol, it appears to the server that the file data are bounded by 
the size of the file being sent to it. In fact, the server is easy to write. All it needs to do is read 
the size of the file from the network, and then proceed to read that number of bytes from the 
network. Once that number has been reached, the next network read will be the number of 
bytes for the next file. However, the fragmentation of the original data on the client machine, 
and the subsequent reassembling on the server machine, can tell a very different story, as 
shown in Figure 10. 
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Figure 10. Arbitrary File Boundaries Ignored by TCP 

In this example, the data stream in the kernel was arbitrarily broken up into two packets of 
equal size. By observing the network traffic, we can see that the first packet sequence has 
data from both file_u (unclassified) and file_t (top secret), where the second packet sequence 
has the remaining data from file_t. The kernel or the TCP protocol cannot distinguish any 
artificially constructed boundaries applied to the data. Further, correctly labeling the first 
packet sequence, with respect to the data contained within it, is also problematic. Neither a 
'T label nor a 'IT label is correct, since both types of data are present. 

This problem was also detected using the snoop and sentinel utilities during the lab 
experiments and is shown in Figure 11. 

jd.sei.cmu.edu -> gc.sei.cmu.edu TCP D=4004  S=34304 
Ack=3482872727  Secj=832516110 Len=120 Win=8760"M 

data CIPSO header] 
lb |860c 0000  0000  0206 0055  00ee BoOO 
H   'i'9f   -•"(;-?  rfSS   Sb97   5018   2/3P S ••:>'/ f. 
}0 15555  5555  5555   5555  5555   5454 54541 

label 

.u... 

IP_OPTION number 
IP_OPTION length 
CIPSO taglevel 
Security Violation 

from '128.237.3.98 

UUUUUUUUUUTTTT 

0x86 (CIPSO) 
0x0c (12) 
U   (unclassified) 

found 'T' when expecting 'U' at 10 of 120 

Figure 11. A Captured Data Mixed Network Packet 

As illustrated in Figure 11, both 'U' data and 'T' data appeared in a single packet and were 
detected as a security violation. 
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Results from Experiment 2 
1. TCP/IP as defined by the specification [Postel 81b] does not support multiple data labels 

over the same TCP connection. Although it is possible to successfully establish and 
maintain an IPSO data label on a TCP connection, attempts to change the label on that 
same connection can have non-deterministic results (such as packet mislabeling and data 
mixing). 

2. Interestingly, the sender program that was discussed above (in "Sender and Receiver") 
was capable of optionally sending UDP datagrams. When the sender and the receiver 
were configured for UDP we were able to send labeled messages without a security 
violation—as long as the size of the message did not exceed the maximum transfer unit 
(MTU) of the NIC. However, if the size of the message exceeded the NIC's MTU, we 
could observe security violations. 

3.3    Experiment 3—Labels and TCP/IP 
Finally, we performed an analytical study rather than an experiment conducted in a test 
harness. Given the evidence gathered from above, it was not difficult to identify cases where 
IPSO labels in a Cryptek-hardened network could cause problems with TCP connections. 
Most notably, we cover two such instances here: 

• TCPACKS and "piggy backing": ATCP acknowledgement is combined with TCP data 
where the data label for the acknowledgement does not match the TCP data. ('U' 
acknowledgement data label is imposed on 'T' data.) 

• TCP error processing: TCP packets are dropped by the recipient and are not 
acknowledged due to a mismatch of the security data labels between sender and receiver. 

TCP ACKS and "Piggy-Backing" 
The TCP protocol allows acknowledgments (ACKs) to be sent along with data (frequently 
called piggybacking). Piggybacking usually occurs when one end of a connection needs to 
simultaneously send data and acknowledge received data. When this occurs, the ACK is sent 
in the same packet as the data, which results in the same IPSO header for the 
acknowledgement, and the data. Theoretically, in a secure environment one would expect the 
IPSO header in an acknowledgment to match the data received. 

The following is an example of this risk (as illustrated in Figure 12). Two processes are 
communicating via TCP. Process 1 sends process 2 'U' data while process 2 sends process 1 
T' data. At the lowest levels of each process' operating system (OS), the TCP drivers much 
acknowledge (ACK) receipt of data. When process 2's OS prepares the 'T' data for 
transmission to process 1, the OS is free to piggyback the TCP ACK for 'U' data received 
from process 1 (at some earlier point in time). In a multi-labeling environment, the label that 
will be assigned to the "piggybacked" packet cannot be determined. Further, assignment of 

either a 'U' or 'T' data label would not be correct. 
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Send "U" data 

T data w/T label (fragment 1) 

Tdataw/"U"label (fragment2 ACKlngJOfdata) 

Send "T" data 

Figure 12. TCP ACKS and "Piggy Backing" Failure 

TCP Error Processing 

When a TCP packet is lost, the network subsystem does not have to retransmit the identical 
packet. Instead, the TCP specification allows an implementation to perform re-packetization, 
which is the ability to send a packet that contains the lost segment and additional data that 
need to be sent. Due to possible re-packetization of lost segments and the inability to specify 
the IPSO header for a specific segment of data, one cannot reliably set the IPSO header to 
reflect the data being sent once transmission of data begins. 

When an incoming or outgoing packet violates a security constraint, the NIC would silently 
discard the packet without notifying the application or operating system. This feature will 
cause problems for TCP if a packet is discarded by the NIC once a connection has been 
established (see Figure 13). Because TCP is a reliable protocol, it will resend the dropped 
packets as the card will continue to drop the same packets that violate the security 
constraints. Eventually the TCP connection will be broken due to retransmission failures. 
The application has no way of determining the cause of the failure (e.g., was it a TCP circuit 
failure or a security violation). 

-In further analysis, we concluded that this behavior was not only acceptable, but preferred, 
because it prevented covert channel analysis, which is in itself a potential security violation. 
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Send "U" data 

Switch IPSO Label 
Send "T" data 

Resend "T" data 

Resend "T" data 

Resend "T" data 
& fail 

ACK"U"data 

Figure 13. TCP Error Processing 

Results from Experiment 3 

Although not directly observed in a testbed, analysis based on an understanding of the TCP 
protocol indicates other problems associated with the application of multiple IPSO data 
labels on the same TCP connection. The problems associated with TCP protocol 
acknowledgements and error processing would be difficult to work around without a 
fundamental change to the TCP protocol (which is unlikely). 
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4    Summary Findings 

Our investigations identified two issues that need to be addressed to successfully integrate 
Cryptek's Diamondr/sAT Ultra technology for Phase 2 of deployment into the JEDMICS 

environment. The issues are 

• limitation of TCP support for switching IPSO data labeling over a single TCP-based 
connection (discussed in Sections 3.2 and 3.3) 

• limitation of WindowsNT support for IP SO data labeling (discussed in Section 3.1) 

We found that the application of this technology in the context of JEDMICS servers that are 

required to perform multiple data labeling functions was in direct conflict with the 
underlying protocols and intended use of IPSO data labeling. Without a fundamental change 
in the behavior of TCP, there is little likelihood that the application of the off-the-shelf 
Cryptek technology could be applied in the context originally defined by the JEDMICS 
environment. 

Applications of data labeling are subject to the capabilities and limitations assigned to IPSO. 
Essentially, the IP is capable of carrying security classification information on IP packets 
(and also TCP segments), so this information can be communicated end-to-end across 
multiple networks. In this manner, packet-level security information permits hosts and 
gateways that operate in multilevel secure environments to properly segregate packets for 

security considerations [Postel 81b]. 

For TCP, IPSO data labeling is limited to operate on a per connection basis. This means that 
once a TCP connection is established, the IPSO label initially given to that connection is 
supported for the life of that connection. Resetting the IPSO label a second time for the same 
TCP connection is not supported by the specification: Section 2.9 (Precedence and Security) 
of the TCP specification in [Postel 81b] warns that the use of IPSO to provide precedence 
and security information is limited to a "per connection basis to TCP users."3 Further Postel 
goes on to state that not all TCP modules will necessarily function in a multilevel secure 

environment. 

These statements, combined with the experiments performed by the Software Engineering 
Institute (SEI), illustrate this limitation of IPSO to be true. Commercial operating systems do 
not support changing the data label during a connection. The experiments conducted and 

explanations given in Section 3 illustrate the nature of this limitation. 

3   Users, in this context, are higher level applications and application-specific protocols based on TCP. 
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5    Epilogue 

The JEDMICS program believed that application of IPSO labeling via Cryptek's technology 
would be an attractive, seamless mechanism for satisfying the requirements placed upon the 
program. This theory would have been born out if JEDMICS servers had to deal only with 
single classification levels. However, the additional level of complexity of requiring support 
for different labels for each document had a negative cascading effect through the 
application of DiamondTEK Ultra. Such application needs were in conflict with the 
standards set for IP networks nearly 20 years ago and with the implementation of a single 
vendors network stack, which fell short of the TCP specification. 

To resolve this mismatch, the JEDMICS program changed the context of the problem they 
were trying to solve. This was accomplished by the introduction of a security processor 
(possibly to be prototyped by Phase 2 deployment). Figure 14 illustrates how this security 
processor would operate. 

Enclave 3 

C-NICl 

WWW 
Server 

Enclave 1 

Client WWW 
Server 

NIC - Network Interface Card 
C-NIC -Cryptek'sNetwork Interface Card 

W 
»ÜNiä Ic-Nicj—Hc-Nici    IC-NICHM^ 

Security 
Processor 

Q 
!JJ    Legacy 

JEDMICS 
Server 

Figure 14. Security Processor Example 

In the example shown above, a security processor would be the sole gateway into a 
JEDMICS server. In this case, the security processor would use a native application-specific 
API (i.e., JEDMICS API for a JEDMICS server) to access documents. The security processor 
at the application layer would read meta-data available from the legacy system via the API, 
noting the security label. In turn the security processor would make use of DiamondTEK 
Ultra to appropriately label outgoing data according to the information contained in the 
meta-data. 
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Given that the data outbound from the security process are labeled accordingly, 
DiamondTEK Ultra would perform the necessary functions to encrypt the data and enforce 
data labeling. 

Given this capability, the security processor would be able to service multiple enclaves, 
which would be required to use DiamondT.E# Ultra. In the example above, if a WWW server 
from enclave 3 requests data and information from the legacy system (through the security 
processor), which is required to be labeled higher than that enclave is permitted access, the 
security processor can deny that data without any changes being made to the legacy backend 
server. This enforcement would also be supported by DiamondTEK Ultra, as data labeled 
higher than the receiving system is permitted to receive would be denied and audited by 
£>7Gentral. 
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